
TEORÍA DE REDES DE TELECOMUNICACIONES

Grado en Ingeniería Telemática
Grado en Ingeniería en Sistemas de Telecomunicación

Curso 2015-2016

Lab work #5. Traffic routing. Flow-path
formulations

(1 session)

Author:

Pablo Pavón Mariño

1 Objectives

The goals of this lab work are:

1. Create Net2Plan algorithms that solve several variants of the traffic routing problem, solving
flow-path formulations of the problem using the Java Optimization Modeler (JOM) library.

2. Gain experience with the different forms of writing optimization problems in JOM, making benefit
of its vectorial representation capabilities.

3. Explore the potential of the matricial representation of the routing constraints in JOM and
Net2Plan.

2 Duration

This lab work is designed for one session of two hours.

3 Evaluation

This lab work has been designed to guide the students in their learning of Net2Plan. The annotations
the students make in this document are for their use when studying the course, and do not have to be
delivered to the teacher for evaluation.

4 Documentation

The resources needed for this lab work are:

• JOM library documentation (see http://www.net2plan.com/jom).

• Net2Plan tool and their documentation (see http://www.net2plan.com/).

• Instructions in this wording.

5 Previous work before coming to the lab

• Read Section 4.2 and 4.6.2 to 4.6.4 of [1], and the lecture notes regarding flow-path formulations.

• Refresh your reading in the JOM documentation in http://www.net2plan.com/jom, in particu-
lar, how vector of variables and constraints are handled.

6 Minimum bandwidth routing

We are interested in creating Net2Plan algorithms that solves the minimum bandwidth routing problem
using JOM. The problem is defined as follows:

1

• Input parameters (known constants):

– N : Set of network nodes.

– E : Set of network links.

– ue, e ∈ E : Capacity of a link e.

– D: Set of offered unicast demands.

– hd, d ∈ D: Offered traffic of a demand d.

– Pd, d ∈ D: For each demand, list of the admissible paths. In our case, the k loopless shortest
paths between the demand end nodes, in number of hops. These are the paths accepted as
potential routes to carry traffic of the demand.

– P: the set of all the admissible paths in the network (P =
⋃

d∈D Pd). Given a path p ∈ P,
we denote as d(p) to the demand that p is associated to. We denote as lp to the number of
links traversed by path p. Given a link e, we denote as Pe to the set of admissible paths
(i.e. in P) traversing e.

• Decision variables:

– xp, p ∈ P: Carried traffic by path p

• Formulation:

min
∑

lpxp, subject to: (1a)∑
d∈Pd

xp = hd, ∀d ∈ D (1b)

∑
e∈Pe

xp ≤ ue, ∀e ∈ E (1c)

xp ≥ 0, ∀p ∈ P (1d)

The objective function (1a) minimizes the total amount of traffic in the links: for each path, its
carried traffic multiplied by the number of traversed links. Constraints (1b) mean that for each demand,
all the traffic is carried (the sum of the traffic carried by the demand’s route sums the demand’s offered
traffic). Constraints (1c) mean that for each link, the traffic carried in the link is less or equal than
its capacity (and thus, no link is oversubscribed). Finally, (1d) forbids that a path carries a negative
amount of traffic, since this has no physical meaning.

7 Net2Plan algorithm

The student should develop a Net2Plan algorithm solving problem (1) following the next steps:

1. Copy the AlgorithmTemplate.java file in Aula Virtual and rename it as FlowPathUnicast.java.

2. The algorithm should have one input parameter named k, with default value 10, and description
Maximum number of loopless admissible paths per demand.

3. Set the routing type of the input NetPlan object to source routing.

4. Remove all the existing routes in the input design.

2

5. For each demand, compute the k loopless shortest paths between the demand end nodes (k is
the input parameter), in number of hops. For this, use the function
GraphUtils.getKLooplessShortestPaths. All these paths should be added to the input NetPlan
design as routes with zero carried traffic. They are the admissible paths. Note than then:

• Given a Net2Plan demand d, the method d.getRoutes returns the routes of the demand
(and thus the Pd set).

• Given a Net2Plan link e, the method e.getTraversingRoutes returns the routes traversing
the link (and thus the Pe set).

6. Create an object of the type OptimizationProblem (e.g. of name op).

7. Add the problem decision variables, with name x_p: one variable per admissible path (and thus,
one per route in the NetPlan object). The minimum value of the variables is set to zero, the
maximum to Double.MAX_VALUE.

8. Set the problem objective function. For this:

• Set a JOM input parameter (using the method setInputParameter) of name l_p, con-
taining a row vector with as many elements as admissible routes, and coordinate p con-
taining the number of hops of the admissible route of index p. Use the method net-
Plan.getVectorRouteNumberOfLinks() to obtain automatically such vector.

• Set the objective function using any of these two forms:

– Use the sum function of JOM combined with the operator .* (element-by-element mul-
tiplication).

– Use the operators * (matrix multiplication) and ’ (transpose), since the objective func-
tion equals the row vector lp multiplied by the vector xp in a column form.

9. Use a for loop with one iteration per demand, to add the constraints (1b). One constraint is
added inside each iteration of the loop. For adding the constraint of a demand d:

• Set a JOM input parameter of name h_d, with a value equal to the demand offered traffic.

• Set a JOM input parameter of name P_d, with a vector array containing the indexes of the
routes carrying traffic of the demand. Use the method getRoutes of the demand object for
getting the routes, and the static method NetPlan.getIndexes to convert the collection of
demand objects to a collection of their indexes.

• Set the constraint using the function sum, over x_p, but restricting the sum to the elements
in P_d.

10. Use a for loop with one iteration per link, to add the constraints (1c). One constraint is added
inside each iteration of the loop. For adding the constraint of a link e:

• Set a JOM input parameter of name u_e, with a value equal to the link capacity.

• Set a JOM input parameter of name P_e, with a vector array containing the indexes of
the routes traversing the link. Use the method getTraversingRoutes of the link object for
getting the routes, and the static method NetPlan.getIndexes to convert the collection of
demand objects to a collection of their indexes.

• Set the constraint using the function sum, over x_p, but restricting the sum to the elements
in P_e.

11. Call the solver to find a numerical solution.

12. Retrieve the primal solution obtained. Then, for each route in the network, set its carried traffic
and occupied link capacity according to the optimum solution found.

3

13. Use the method removeAllRoutesUnused of the NetPlan object to remove those unused routes.
We consider an unused route, the ones carrying less then 0.001 traffic units (routes with non-zero
carried traffic, but with a traffic so small can appear because of numerical errors in the solver).

7.1 Check the algorithm

Load the network example7nodesWithTraffic.n2p. The algorithm should produce a solution with an
amount of consumed bandwidth in the links of 155.5.

If we reduce the capacity of the links to 15 units (instead of 50), the optimum solution will consume
174.1 units.

If we reduce the capacity of the links to 10 units, the problem will be unfeasible (there is not enough
capacity in the links to carry the traffic in any form).

Quiz 1. Is the traffic going through the shortest paths for all demands in the first case (ue = 50)?
does it hold again for ue = 15?

8 Problem variations

Quiz 2. Modify the admissible list computation, by considering as admissible the k loopless shortest
paths for each demand, measure in total length (that is, summing the length in km of the traversed
links). Note: This means passing to the getKLooplessShortestPaths method, a link cost map where the
cost of each link equals to its length in km.

Quiz 3. Add an input parameter to the problem, so that the user can limit the maximum number of
hops of any admissible path. Parameter name: maxNumHops, default 4, description “Maximum number
of hops of an admissible path”.

Quiz 4. Modify formulation (1) so that now the xp variables are renamed as x̂p, and measure the
fraction (∈ [0; 1]) of the traffic of demand d(p), that is carried through path p.

• Decision variables:

– x̂p, p ∈ P: Fraction ∈ [0, 1] of demand d(p) carried traffic that goes through path p

• Formulation:

min
∑

lphpx̂p, subject to: (2a)∑
d∈Pd

x̂p = 1, ∀d ∈ D (2b)

∑
e∈Pe

hpx̂p ≤ ue, ∀e ∈ E (2c)

0 ≤ x̂p ≤ 1, ∀p ∈ P (2d)

Remake the algorithm with the new decision variables (changing their name in JOM to xx_p). The
constants hp provide for each path p, the offered traffic of its associated demand d(p). The vector hp
can be obtained in Net2Plan using the method of NetPlan:

getVectorRouteOfferedTrafficOfAssociatedDemand

4

Note that if the xx_p decision variables are constrained to be integer (that is, or 0 or 1), then
the routing is constrained to be non-bifurcated. Add an input parameter to the problem called
isNonBifurcated, with default value false. Use this parameter to permit the user choosing if the
routing is constrained or not to be bifurcated.

Quiz 5. Implement a Net2Plan algorithm that solves a flow-path formulation to find the routing that
maximimizes the idle bandwidth in the bottleneck. Take the formulation from the lecture notes, or
Section 4.2 of [1]:

max u, subject to: (3a)∑
d∈Pd

xp = hd, ∀d ∈ D (3b)

∑
e∈Pe

xp ≤ ue − u, ∀e ∈ E (3c)

xp ≥ 0, ∀p ∈ P (3d)

9 Matricial form of problem constraints (optional)

9.1 Demand satisfaction constraints

The demand satisfaction constraints in (1) take the form:∑
p∈Pd

xp = hd, ∀d ∈ D

All the |D| constraints can be represented by a single vectorial equality as follows:

Adp × x′p = h′ (4)

where:

• Adp is demand-to-route assignment matrix. This is a |D|× |P| matrix with one row per demand,
and one column per admissible path. Coordinate (d, p) is 1 if the path p is an admissible path
associated to demand d, and 0 otherwise.

– The demand-to-route assignment matrix can be obtained as an sparse matrix in Net2Plan
using the method of NetPlan class:

getMatrixDemand2RouteAssignment

• xp is a 1× |P| row vector, with the decision variables (the traffic carried by path p).

• h is a row vector 1× |D| with the offered traffic of each demand.

– The offered traffic vector can be obtained in Net2Plan using the method of NetPlan class:

getVectorDemandOfferedTraffic

5

9.2 Link capacity constraints

The link capacity constraints in (1) take the form:∑
p∈Pe

xp ≤ ue, ∀e ∈ E

All the |E| constraints can be represented by a single vectorial inequality as follows:

Aep × x′p ≤ u′ (5)

where:

• Aep is link-to-route assignment matrix. This is a |E| × |P| matrix with one row per link, and one
column per admissible path. Coordinate (e, p) is the number of times that path p traverses link
e.

– The link-to-route assignment matrix can be obtained as an sparse matrix in Net2Plan using
the method of NetPlan class:

getMatrixLink2RouteAssignment

• xp is a 1× |P| row vector, with the decision variables (the traffic carried by path p).

• u is a row vector 1× |E| with the capacity of each link.

– The link capacity vector can be obtained in Net2Plan using the method of NetPlan class:

getVectorLinkCapacity

Quiz 6. Rewrite the demand satisfaction and link capacity constraints using their matricial form.
Recall that JOM operator * implements the standard matrix multiplication.

10 Work at home after the lab work

The student is encouraged to complete all the Quizs that he/she could not finish during the lab session.

6

Bibliography

[1] P. Pavón Mariño, “Optimization of computer networks. Modeling and algorithms. A hands-on ap-
proach”, Wiley 2016.

7

